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We present unified theory of both normal and superconducting states based on the fully self-consistent
T-matrix approximation. We argue that the failure of the customary T-matrix approach below the critical
temperature is caused by nonphysical repeated collisions. We eliminated the repeated collisions from the
Galitskii-Feynman approximation. Obtained corrections are proportional to the inverse volume in the normal
state and, thus, vanish in the thermodynamical limit. In the superconducting state these corrections remain
finite and describe the Bardeen-Cooper-Schrieffer �BCS� gap. The T-matrix approach goes beyond mean-field
BCS theory. It is, thus, well suited for studies of the systems with large fluctuations such as the BCS–Bose-
Einstein-condensate crossover or size effects in small metallic grains and the nuclear matter.
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I. INTRODUCTION

Trapped Fermi gases with binary interaction controlled by
an external magnetic field offer a laboratory for studies of the
superconducting state under extremely versatile
conditions.1–6 The crossover from the Bardeen-Cooper-
Schrieffer �BCS� superconductivity to the Bose-Einstein con-
densate �BEC� is one of newly accessed regimes. Experi-
ments on these systems can test recent theoretical
nonperturbative approaches7–13 or quantum Monte Carlo
simulations.14,15

Another “superconducting” phenomenon which has at-
tracted a lot of attention is the pseudogap in high-Tc materi-
als �see Refs. 16–18 and references therein�. As follows from
solutions of the Hubbard model,16,19–23 the pseudogap is
caused by precursor superconducting fluctuations. This be-
havior is beyond mean-field theories of the BCS type. It
should be noted that the Hubbard model is also used to study
the BCS-BEC crossover.9,24

Important role of superconducting fluctuations has re-
vived an interest in low-dimensional systems. A decade ago
the tunneling spectroscopy of metallic nanoparticles25,26 has
confirmed size effects predicted by Anderson.27 Recent the-
oretical studies6,28 benefit from the Richardson approach29

designed originally for the size correction to superfluidity in
nuclei.

It is a challenge for the many-body theory to develop
approximations covering the superconducting phase transi-
tions in such a wide family of systems. Most nonperturbative
approaches,10,13–16 however, represent rather special methods
with difficult intuitive interpretations. Moreover, these meth-
ods do not provide a simple link to nonequilibrium
phenomena.30,31

In this paper we employ the many-body Green’s functions
which have a convenient diagrammatic representation and a
well-established interpretation. We work with Matsubara’s
functions, but the reader skilled in the Kadanoff-Baym or
Keldysh formalism32–35 can readily convert all present for-
mulas into equations for the nonequilibrium Green’s func-
tions.

Our approach is based on the two-particle T matrix in the
ladder approximation proposed by Galitskii36 within Feyn-
man’s perturbation scheme.37 It is useful for systems with
strong interaction of short range, be it nucleons, 3He atoms
in quantum liquid, or any atoms in a gas.

We modify the Galitskii-Feynman approximation by re-
moving nonphysical repeated collisions as demanded by the
multiple-scattering theory.38,39 With this technically minor
modification the T-matrix approximation becomes applicable
to the superconducting state. In the �conventional� normal
metal, corrections are of the order of 1 /�, where � is a
system volume, but in the superconductor these corrections
are of the order of unity.

A. T matrix in the theory of superconductivity

Let us first outline why the Galitskii-Feynman approxima-
tion has to be modified. This is best seen from the history of
its implementations.

Applications of the T matrix to the superconductivity have
been attempted shortly after the invention of BCS theory
because the T matrix describes two-particle correlations in-
cluding bound states.40,41 This method offers a natural way to
establish parameters of the interaction Hamiltonian from ex-
perimental data. Indeed, in the low-density limit, the T ma-
trix yields the differential scattering cross section, which pro-
vides the most sensitive experimental data on the interaction,
be it for nucleons42,43 or atoms in the gas. It should be no-
ticed that interaction via the Feshbach resonance11 is also
treated in terms of the scattering cross section.

The application of the T matrix to the superconductivity
turned out to be problematic, however. Among various per-
turbation schemes for many-body systems, only the
Galitskii-Feynman method correctly describes the instability
of the normal state with respect to a formation of Cooper
pairs.41,44 This success is only partial, however. Already in
1960 Prange45 and Wild46 showed that the Galitskii-Feynman
T matrix diverges at the critical temperature as expected, but
it fails to describe the BCS gap at lower temperatures.
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Prange45 pointed out that the BCS theory is recovered if
one replaces all the dressed Green’s functions of the closed
loop by their bare �noninteracting� values while the open line
of self-energy remains dressed. Properties of such partly self-
consistent theory were discussed in detail by Kadanoff and
Martin47 and tested on the attractive Hubbard model,10 show-
ing that it yields satisfactory results for the superconducting
state. Of course, this theory is not suited for the normal state
for which one should use the fully self-consistent Galitskii-
Feynman approximation.

The superiority of the unjustified partly self-consistent
theory over the fully self-consistent Galitskii-Feynman ap-
proximation is striking. How can one trust theory in which
inclusion of additional diagrams destroys fundamental physi-
cal properties? Tolmachev48 calls this problem the Prange
paradox.

Tolmachev saw the origin of the paradox in a violated
Ward identity.48 He proposed to leave the customary relation
between the T matrix and the self-energy in which one closes
the loop on one of lines of the T matrix. Instead he constructs
the self-energy from the Ward identity. His scheme is rather
complicated and as far as we know it was never imple-
mented.

Langer49 identifies the problem of the T-matrix approach
to superconductivity in a violated antisymmetry of many-
particle states. He proposed to avoid the linked cluster ex-
pansion and evaluate the statistical sum by a direct summa-
tion. His inspirative approach is too complicated to be
implemented.

Apparently, the T-matrix theories are different for the nor-
mal and the superconducting state. Above the critical tem-
perature the Galitskii-Feynman approximation covers the
normal state including the pseudogap.50 Below the critical
temperature, the superconducting gap appears only within a
partly non-self-consistent theory. To be able to study the
phase transition itself and the fluctuations in its vicinity, it is
desirable to have a theory which covers the normal and the
superconducting states on the same footing.

With this aim several groups adopted the idea40,51,52 de-
signed for 3He to extend the BCS theory by embedding the
anomalous Green’s functions into the two-particle propaga-
tion of the T matrix.11,12,19,53,54 This modification turned out
to cover a wide family of effects. It applies to the normal and
superconducting states and it describes the BEC on the level
of the Popov approximation,55 i.e., it describes the BCS-BEC
crossover. In the condensed state this theory includes fluc-
tuations which reduce the critical temperature and lead to the
pseudogap in the single-particle spectrum.

Customary theory of superconductivity based on the
anomalous functions does not cover fluctuations of conden-
sate. Gyorffy et al.56 introduced the anomalous functions in
the spirit of the Hubbard alloy analogy to include fluctua-
tions beyond the Gor’kov decoupling. Their numerical study
shows profound effects for moderately strong-interaction
strength. Koh57 made an alternative step beyond Gor’kov
decoupling assuming more general correlations contributing
to a dressed interaction line. Apparently, the choice of
anomalous functions is a problem within advanced approxi-
mations.

In this paper we attack the problem of the unified theory
starting from the normal state. We argue that the Galitskii-

Feynman approximation includes nonphysical processes in
which a collision of two selected particles is repeated with-
out interference of a third particle. Such repeated processes
are impossible in reality, and in the perturbation expansion
they cancel if the antisymmetry of the many-body state is
properly retained. Since it is virtually impossible to include
all diagrams necessary for such compensation, we propose to
eliminate these nonphysical processes by a simple constraint
which does not complicate an implementation of the
T-matrix approximation. We will show that if the nonphysi-
cal repeated processes are removed, the Galitskii-Feynman
approximation works equally well in the normal and the su-
perconducting states.

B. Plan of the paper

We first introduce the Galitskii-Feynman approximation
in Sec. II A. Then we identify nonphysical processes respon-
sible for the failure of the T-matrix approach below the criti-
cal temperature in Sec. II B. In Sec. III we show how to
eliminate them.

In the Appendix we discuss the single-channel approxi-
mation of the present theory. It is shown that below the criti-
cal temperature it yields the BCS gap including finite-size
corrections smearing the phase transition. Above the critical
temperature, the original Galitskii-Feynman approximation
is recovered for the infinite volume.

II. DEFICIENCY OF THE T-MATRIX APPROACH

Let us identify nonphysical processes hidden in the
Galitskii-Feynman approximation. We treat a system of elec-
trons with the Hamiltonian

Ĥ = �
k

��k��a↑k
† a↑k + a↓k

† a↓k�

+
1

�
�
kpq

Vq�p,k�a↓q−k
† a↑k

† a↑pa↓q−p. �1�

We omit interactions between equal spins for simplicity. The
kinetic energy has zero at the Fermi surface, ��k�=k2 /2m
−EF. Variables p and k are the relative momenta before and
after interaction, respectively. q is the total momentum of the
interacting pair of particles. The creation a↑k

† and annihilation
a↑k operators are normalized to the sample �or quantization�
volume �, e.g., �†�r�= �1 /����kak

†e−ik·r.
The dressed single-particle Green’s function G↑ is given

by the Dyson equation

G↑��,k� = G↑
0��,k� + G↑

0��,k��↑��,k�G↑��,k� �2�

with the bare Green’s function

G↑
0��,k� =

1

i� − ��k�
. �3�

Here � is the self-energy, i.e., an energy-dependent potential
which simulates averaged effects of all electrons on the mo-
tion of a selected electron of momentum k, spin ↑, and the
Matsubara frequency �.
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A. Galitskii-Feynman approximation

The Galitskii-Feynman self-energy is constructed from
the two-particle T matrix

�↑
GF��,k� =

kBT

�
�
zq

T q
GF�z,k,k�G↓�z − �,q − k� . �4�

In the ladder approximation the T matrix is

T q
GF�z,p,k� = Vq�p,k�

−
1

�
�
k�

Vq�p,k��Gq
GF�z,k��T q

GF�z,k�,k� ,

�5�

where

Gq
GF�z,p� = kBT�

�

G↑��,p�G↓�z − �,q − p� �6�

describes the propagation of the two particles or holes during
the collision. The convention of signs follows Abrikosov,
Gor’kov, and Dzyaloshinski.58

B. Repeated collisions in the Galitskii-Feynman approximation

Let us show that the Galitskii-Feynman approximation in-
cludes nonphysical processes. First, there are repeated
scattering-out processes which appear due to products of the
self-energy in the Dyson Eq. �2�. Indeed, if we expand the
dressed function in powers of the self-energy, G↑=G↑

0

+G↑
0�↑G↑

0+G↑
0�↑G↑

0�↑G↑
0+¯, there is no restriction on re-

peated processes in products such as

G↑
0�↑G↑

0�↑G↑
0 =

kB
2T2

�2 G↑
0�

zq
�TqG↓�G↑

0 �
z�q�

�Tq�G↓�G↑
0. �7�

To avoid nonphysical repeated collisions, all products with
q�=q ought to be excluded.

Second, repeated scattering-in processes are hidden in the
self-consistent construction of the self-energy. The self-
energy is a functional of the dressed Green’s functions,
�↑

GF�G↑ ,G↓� �see Eqs. �4�–�6��. In this way the collision pro-
cess described by the self-energy �↑

GF�G↑ ,G↓� also contrib-
utes to its internal Green’s function G↑; therefore, this pro-
cess supplies particles into its own initial state. For instance,
the self-energy �Eq. �4�� includes the double sum

�↑
GF�G↑,G↓� =

kBT

�
�
zq
�Tq�G↑

0 + G↑
0kBT

�
�
z�q�

�Tq�G↓�G↑
0 + , . . . ,G↓	G↓
 �8�

from which the terms with q�=q should be excluded.
We show below that in the normal metal, the repeated

collisions yield negligible contribution, since the weight of a
single channel in the sum over q is inversely proportional to
the volume and vanishes in thermodynamical limit. In the
superconductor, however, the repeated collisions in the pair-
ing channel are enhanced and block the formation of the gap.
Our goal is to remove these nonphysical processes from the
perturbation expansion.

III. ELIMINATION OF THE REPEATED COLLISIONS

The simplest way to remove nonphysical processes is to
sacrifice the whole classes of diagrams which include them.
This is the physical reason for the success of the partly non-
self-consistent approximation introduced by Prange45 and re-
cently called the Kadanoff-Martin approximation. Unfortu-
nately, the classes of neglected diagrams are so large that this
approximation does not describe the normal state.

In this section we introduce a constraint which removes
the nonphysical processes selectively. We obtain a theory
which equally well describes the normal and the supercon-
ducting states.

The perturbation expansion for multiple scattering with-
out repeated collisions has been formulated within the
nuclear physics �see Ref. 39 and references therein�. These

expansions �e.g., Fadeev equations� are suited for a small
number of particles; therefore, they cannot be easily modi-
fied to condensed-matter problems.

The repeated collisions have also troubled the theory of
alloys.59,60 The straightforward summation of ladder dia-
grams for interaction of an electron with a single impurity
leads to the so-called self-consistent averaged T-matrix ap-
proximation, which has basically the same shortcomings as
the Galitskii-Feynman T-matrix approximation. In particular,
an electron can be scattered by the same impurity twice with-
out interference of any additional impurity. Similarly as we
have seen above, such repeated scattering-out processes re-
sult from the powers of the self-energy in the Dyson equation
and the repeated scattering-in processes results from the self-
consistency of the T matrix.

Soven59 showed that the repeated collisions are eliminated
if the self-energy is defined via an effective medium. This
should be distinguished from the usual approach, where the
self-energy is expressed as a sum of selected diagrams. The
sum of ladder diagrams for impurity embedded in the effec-
tive medium yields an approximation which is free of re-
peated collisions and provides appreciably better description
of alloys than the averaged T matrix.60

The Soven idea of how to remove the repeated collisions
can be adopted to the Galitskii-Feynman approximation as
follows:

�i� Split the interaction and the self-energy into channels.
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�ii� Describe all channels but one by the self-energy. For
the selected channel use the collision theory to evaluate the T
matrix.

�iii� Evaluate the Green’s function from the T matrix.
Identify the self-energy from the resulting Green’s function.

Next we apply steps �i�–�iii�.
�i� The interaction potential is naturally split into channels

belonging to the total momentum q. In analogy with Eq. �4�
we can also expect that the self-energy is a sum of individual
single-channel contributions

�↑��,k� = �
q

�q↑��,k� . �9�

�ii� We define a subsidiary reduced Green’s function in
which the q channel is not included

Gq↑ = G↑ − Gq↑�q↑G↑. �10�

In terms of the bare Green’s function the reduced Green’s
function reads Gq↑=G↑

0+Gq↑��↑−�q↑�G↑
0.

From the q-reduced Green’s function we construct the
q-reduced two-particle Green’s function

Gq↑�z,p� = kBT�
�

Gq↑��,p�G↓�z − �,q − p� . �11�

Note that the Green’s function for the spin ↓ is not reduced,
because we have excluded only the spin ↑ part of the self-
energy. The reduced spin component is specified in the sub-
script of the two-particle function.

The two-particle Green’s function describes the interme-
diate propagation of two interacting particles in the ladder
approximation of the T matrix

Tq↑�z,p,k� = Vq�p,k� −
1

�
�
k�

Vq�p,k��Gq↑�z,k��Tq↑�z,k�,k� .

�12�

Using the q-reduced Green’s function for the internal two-
particle propagation, we have eliminated the repeated
scattering-in processes.

�iii� The T matrix covers all orders of the binary interac-
tion. The dressed Green’s function, thus, reads

G↑��,k� = Gq↑��,k� + Gq↑��,k�Sq↑��,k�Gq↑��,k� ,

�13�

where

Sq↑��,k� =
kBT

�
�

z

Tq↑�z,k,k�G↓�z − �,q − k� �14�

is the reducible self-energy for the channel q. The reducible
self-energy S has to be distinguished from the irreducible
self-energy �. This construction is free of successive
scattering-out collisions.

The irreducible self-energy � results when we express the
dressed Green’s function G from Eq. �10� and compare it
with relation �13�, Sq↑=�q↑�1−Gq↑�q↑�−1. This is solved by

�q↑��,k� =
Sq↑��,k�

1 + Gq↑��,k�Sq↑��,k�
. �15�

Equations �9�–�15� determine the self-energy ��G� as a
function of the dressed Green’s function. The Dyson Eq. �2�
gives G��� and closes the set of equations.

Numerical demands to solve the present set of equations
are comparable to the solution of the Galitskii-Feynman
T-matrix approximation. Such a numerical treatment goes
beyond the scope of this paper, however. In the Appendix we
discuss properties of the present approximation under simpli-
fied conditions, which allow us to derive analytic results.

IV. SUMMARY

We have shown that the single-particle Green’s function
constructed from the two-particle T matrix includes non-
physical repeated collisions of interacting pairs. These
nonphysical processes are negligible in the normal state but
make the T-matrix approach inapplicable to the super-
conducting state. We have eliminated the repeated collisions
using ideas of the multiple-scattering theory. The present ap-
proximation reproduces the Galitskii-Feynman approxima-
tion in the normal state.

In the single-channel approximation the present theory re-
produces the BCS results and provides a correction beyond
it. This correction is inversely proportional to the sample
volume and, thus, vanishes in the thermodynamic limit. At
the finite volume this correction makes the transition from
the normal to the superconducting state smooth, i.e., without
nonanalytic jump at the transition temperature.

It is noteworthy that the present approach is not of the
mean-field type and does not introduce anomalous functions.
Since the theory is based on quantities corresponding to the
mean value of the square of the gap, it includes fluctuations
beyond the mean-field picture.

The present theory is based on the self-consistent expan-
sion within the Green’s functions. It is, thus, a suitable ap-
proximation for studies of the transport using the machinery
of the nonequilibrium Green’s functions.
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APPENDIX: BCS GAP WITH VOLUME CORRECTIONS

In this appendix we demonstrate the present theory on a
simple model using additional approximations.

1. Single-channel approximation

Our discussion is restricted to homogeneous systems;
therefore, there is no diamagnetic current and the Cooper
pairs condense into the q=0 state. We, thus, expect �q=0
��q�0 and write the self-energy as
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� = �0 + �
q�0

�q = �0 + ��. �A1�

We focus on the q=0 and spin ↑ channel. By definition,
the 0-reduced Green’s function is

G0↑��,k� =
1

i� − ��k� − �↑���,k�
, �A2�

and the Dyson equation yields the dressed function as

G↑��,k� =
1

i� − ��k� − �↑���,k� − �0↑��,k�
. �A3�

We remind that the subscript with bold face 0 denotes the
q=0 channel. It should be distinguished from the superscript

0 which above denotes the bare function, G0�G0. Within
this appendix the bare function is not used.

Due to the singular character of the Bose statistics, the
zero-frequency element of the T matrix is much larger than
others, T0�z=0,k ,k��T0�z�0,k ,k�. Neglecting the non-
zero frequencies we approximate the reducible self-energy as

S0↑��,k� �
kBT

�
T0�0,k,k�G↓�− �,− k� . �A4�

The reducible self-energy �Eq. �A4�� can be readily sub-
stituted into the dressed Green’s function �Eq. �13��. Since
the reducible self-energy S0↓ is obtained by the interchange
↑↔↓ in the above expression, the set of equations is closed.
The resulting dressed Green’s function reads

G↑��,k� =
1

i� − ��k� − �↑���,k� −

kBT

�
T0↑�0,k,k�

− i� − ��− k� − �↓��− �,− k�

. �A5�

2. Energy gap

The single-particle excitation energy is given by the pole
of G. In order to proceed on a simple analytic level, we
approximate the regular part of the self-energy in the spirit of
the quasiparticle picture by the correction to the band struc-
ture,

��k� + �↑���,k� � ��k� . �A6�

In the quasiparticle approximation �Eq. �A6�� the Green’s
function �Eq. �A5�� results as

G↑��,k� =
− i� − ��− k�

�2 + �2�k� −
kBT

�
T0↑�0,k,k�

. �A7�

The single-particle excitation energy �given by roots of the
denominator with respect to i�� has two branches

	↑�k� = 
��2�k� −
kBT

�
T0↑�0,k,k� �A8�

with the gap

�↑�k� =�−
kBT

�
T0↑�0,k,k� . �A9�

Relation �A9� between the gap and the singular element of
the T matrix holds for a general interaction potential V, pro-
vided that V leads to pairing.

3. Gap equation

To find at which temperature the Cooper pairs nucleate
and how strong their condensate is below this temperature
requires specifying the interaction potential. An explicit con-
dition for the gap, the so-called gap equation, can be derived
using the separable BCS potential

V0�p,k� = − V���cut − ���p������cut − ���k��� . �A10�

The negative sign in the potential corresponds to a conven-
tion of the BCS theory.61 The T matrix is then also separable

T0↑�0,p,k� = T0�0����cut − ���p������cut − ���k��� .

�A11�

Equation �12� now achieves a simple algebraic form

T0�0� = − V + V
1

�
�
k

���k��
�cut

G0�0,k�T0�0� , �A12�

which can be rewritten as

1

V
−

1

�
�
k

���k��
�cut

G0�0,k� = −
1

T0�0�
. �A13�

Condition �A13� corresponds to the BCS gap equation. To
see this we evaluate the integral over the two-particle
Green’s function
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J =
1

�
�
k

���k��
�cut

G0�0,k� =
kBT

�
�
�k

���k��
�cut

G0↑��,k�G↓�− �,− k�

=
kBT

�
�
�k

���k��
�cut 1

�2 + �2�k� −
kBT

�
T0�0�

. �A14�

In the first step we have substituted the two-particle function
G0 from its definition �Eq. �11��. In the second step the
single-particle Green’s function �Eq. �A7�� and reduced
Green’s function �Eq. �A2�� in the quasiparticle approxima-
tion �Eq. �A6�� have been used.

The sum over momenta can be expressed in terms of the
density of states

NE =
1

�
�
k

��E − ��k�� �A15�

as

J = kBT

−�cut

�cut

dE
NE

�2 + E2 −
kBT

�
T0�0�

. �A16�

Finally, we express the T matrix via the gap using relation
�A9�

�2 = −
kBT

�
T0�0� �A17�

so that condition �A13� reads

1

V
− kBT


−�cut

�cut

dE�
z

NE

z2 + E2 + �2 =
kBT

��2 . �A18�

The sum over Matsubara frequencies z= �2n+1��kBT can be
easily evaluated and leads to the distribution, kBT�z

1
z2+	2

= 1
2	 tanh 	

2kBT . Condition �A18� turns into the gap equation

1

V
− 


−�cut

�cut NEdE

2�E2 + �2
tanh

�E2 + �2

2kBT
=

kBT

��2 . �A19�

In the thermodynamical limit �→� the right-hand side goes
to zero so that Eq. �A19� reduces to the familiar gap equation
of Bardeen, Cooper, and Schrieffer. It should be noted that
the correction is proportional to the temperature, i.e., the
zero-temperature gap studied in Refs. 62–64 is not modified
in the present approximation.

4. Volume corrections to the BCS gap equation

In nanometer-scale metallic grains the density of states NE
is a sum of delta functions at discrete energy levels. The

mean energy distance � of the levels on the scale of the
zero-temperature BCS gap �0 controls the size effect on the
superconductivity.27 For � /�0→0 one finds the BCS gap,
while for � /�0�1 the superconductivity disappears. This
effect has been experimentally confirmed and basic features
are qualitatively understood from the Richardson model �see
Ref. 26 and references therein�. Quantitative studies of the
volume and shape dependence of the gap are based on the
BCS theory.62–64

Equation �A19� parallels the BCS gap equation; therefore,
it covers effects of the discrete energy spectrum,63,64 changes
of the effective interaction due to finite extent of the single-
electron wave functions,62 and eventual surface enhancement
of the superconductivity.62 Besides it includes an additional
volume correction given by the term on the right-hand side.
To make clear the role of this new term, we neglect all the
above-mentioned effects and assume a constant density of
states near the Fermi level, NE�N0.

The volume correction is important in the vicinity of the
critical temperature, where the gap is small and the correc-
tion term on the right-hand side of the gap �Eq. �A19�� be-
comes sizable. Let us focus on the vicinity of the critical
temperature.

Close to the critical temperature the integral on the left-
hand side of Eq. �A19� can be expanded in powers of the gap

1

V
− N0


0

�cut dE
�E2 + �2

tanh
�E2 + �2

2kBT
� N0� T

Tc
− 1 +

�2

�0
2
 .

�A20�

The same expansion is used in the microscopic derivation of
the Ginzburg-Landau theory from the BCS theory.65

Within approximation �A20� the gap �Eq. �A19�� is a qua-
dratic equation for �2 with the positive root

�2 =
�0

2

2
��1 −

T

Tc

 +��1 −

T

Tc

2

+
4kBTc

�N0�0
2
 .

�A21�

In formula �A21� one can see that the transition from the
normal to the superconducting state is smeared on the tem-
perature scale proportional to the inverse volume.

Sufficiently below the critical temperature, formula �A21�
yields the finite gap,

�2 � �0
2�1 −

T

Tc

 �A22�

for Tc−T�� 4kBTc
3

�N0�0
2 . The finite-volume correction is negli-

gible compared to the gap in this regime.
The small parameter 4kBTc / ��N0�0

2� determines the
width of the phase transition. Since the density of states re-
lates to the mean distance of energy levels, �N0=1 /�, and
the critical temperature relates to the gap, kBTc= �4 /7��0, we
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can express this width of transition as 4kBTc / ��N0�0
2�

= �16 /7�� /�0. This form shows that the term on the right-
hand side of the gap �Eq. �A19�� becomes important for the
same sample sizes as the discrete structure of energy levels.

5. Recovering the Galitskii-Feynman approximation
in the normal state

Finally, we take a look on the meaning of the gap �Eq.
�A19�� above the critical temperature. We restrict our atten-
tion to the vicinity of the critical temperature where the ap-
proximative solution �Eq. �A21�� holds.

Sufficiently above the critical temperature the single-
channel T matrix resulting from Eq. �A21� is inversely pro-
portional to the volume,

T0↑ = −
�2

kBT
�

kBTc

�N0�1 −
T

Tc

 �A23�

for T−Tc�� 4kBTc
3

�N0�0
2 . Its contribution to the self-energy is thus

not singular and there is no gap. From Eq. �15� it follows that
in the thermodynamic limit, �→�, the reducible and
irreducible single-channel self-energies become identical,
�q↑→Sq↑, for all values of q. At the same time, the single-
channel self-energy makes only negligible correction to the
Green’s function, Gq↑→G↑, therefore Gq↑→Gq

GF. In the nor-
mal state the present approximation is, thus, identical to the
Galitskii-Feynman approximation.

1 J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and J. E.
Thomas, Phys. Rev. Lett. 92, 150402 �2004�.

2 T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M.
Teichmann, L. Tarruell, S. J. J. M. F. Kokkelmans, and C.
Salomon, Phys. Rev. Lett. 93, 050401 �2004�.

3 C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,
040403 �2004�.

4 G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack, and R.
G. Hulet, Phys. Rev. Lett. 95, 020404 �2005�.

5 A. Altmeyer, S. Riedl, C. Kohstall, M. J. Wright, R. Geursen, M.
Bartenstein, C. Chin, J. H. Denschlag, and R. Grimm, Phys. Rev.
Lett. 98, 040401 �2007�.

6 I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
�2008�.

7 W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 �1989�.
8 E. Müller-Hartmann, Z. Phys. B: Condens. Matter 74, 507

�1989�.
9 R. Haussmann, Phys. Rev. B 49, 12975 �1994�.

10 S. Allen and A.-M. S. Tremblay, Phys. Rev. B 64, 075115
�2001�.

11 P. Pieri, L. Pisani, and G. C. Strinati, Phys. Rev. B 70, 094508
�2004�.

12 P. Pieri, L. Pisani, and G. C. Strinati, Phys. Rev. B 72, 012506
�2005�.

13 N. Lerch, L. Bartosch, and P. Kopietz, Phys. Rev. Lett. 100,
050403 �2008�.

14 G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini,
Phys. Rev. Lett. 93, 200404 �2004�.

15 C. Lobo, I. Carusotto, S. Giorgini, A. Recati, and S. Stringari,
Phys. Rev. Lett. 97, 100405 �2006�.

16 T. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 187
�1995�.

17 T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 �1999�.
18 V. M. Loktev, R. M. Quick, and S. G. Sharapov, Phys. Rep. 349,

1 �2001�.
19 M. H. Pedersen, J. J. Rodríguez-Núnez, H. Beck, T. Schneider,

and S. Schafroth, Z. Phys. B: Condens. Matter 103, 21 �1997�.
20 D. Rohe and W. Metzner, Phys. Rev. B 63, 224509 �2001�.
21 M. Potthoff, Eur. Phys. J. B 32, 429 �2003�.
22 M. Potthoff, Eur. Phys. J. B 36, 335 �2003�.

23 M. Aichhorn, E. Arrigoni, Z. B. Huang, and W. Hanke, Phys.
Rev. Lett. 99, 257002 �2007�.

24 R. Haussmann, Z. Phys. B: Condens. Matter 91, 291 �1993�.
25 C. T. Black, D. C. Ralph, and M. Tinkham, Phys. Rev. Lett. 76,

688 �1996�.
26 J. von Delft and D. C. Ralph, Phys. Rep. 345, 61 �2001�.
27 P. W. Anderson, J. Phys. Chem. Solids 11, 26 �1959�.
28 J. Dukelsky, S. Pittel, and G. Sierra, Rev. Mod. Phys. 76, 643

�2004�.
29 R. W. Richardson, Phys. Lett. 3, 277 �1963�.
30 M. L. Chiofalo, S. Giorgini, and M. Holland, Phys. Rev. Lett.

97, 070404 �2006�.
31 D.-S. Lee, C.-Y. Lin, and R. J. Rivers, Phys. Rev. Lett. 98,

020603 �2007�.
32 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics

�Benjamin, New York, 1962�.
33 P. Danielewicz, Ann. Phys. �N.Y.� 152, 239 �1984�.
34 W. Botermans and R. Malfliet, Phys. Rep. 198, 115 �1990�.
35 P. Lipavský, K. Morawetz, and V. Špička, Kinetic Equation for

Strongly Interacting Dense Fermi Systems, Annales de Physique
Vol. 26 �EDP Sciences, Paris, 2001�.

36 V. M. Galitskii, Zh. Eksp. Teor. Fiz. 34, 151 �1958� �Sov. Phys.
JETP 7, 104 �1958��.

37 R. P. Feynman, Phys. Rev. 76, 769 �1949�.
38 M. L. Goldberger and K. M. Watson, Collision Theory �Wiley,

New York, 1964�.
39 C. J. Joachain and C. Quigg, Rev. Mod. Phys. 46, 279 �1974�.
40 K. A. Brueckner, T. Soda, P. W. Anderson, and P. Morel, Phys.

Rev. 118, 1442 �1960�.
41 J. S. Bell and E. J. Squires, Adv. Phys. 10, 211 �1961�.
42 U. Lombardo, H.-J. Schulze, and W. Zuo, Phys. Rev. C 59, 2927

�1999�.
43 T. Duguet, Phys. Rev. C 69, 054317 �2004�.
44 R. F. Bishop, M. R. Strayer, and J. M. Irvine, Phys. Rev. A 10,

2423 �1974�.
45 R. E. Prange, Proceedings of the International Spring School of

Physics, Naples �Academic, Japan, 1960�.
46 W. Wild, Z. Phys. 158, 322 �1960�.
47 L. P. Kadanoff and P. C. Martin, Phys. Rev. 124, 670 �1961�.
48 V. V. Tolmachev, Teorija Fermi-Gaza �Izdatel´stvo Mosk-

MULTIPLE SCATTERING CORRECTIONS TO THE… PHYSICAL REVIEW B 78, 214506 �2008�

214506-7



ovskogo Universiteta, Moskva, 1973�.
49 J. S. Langer, Phys. Rev. 134, A553 �1964�.
50 B. Kyung, E. G. Klepfish, and P. E. Kornilovitch, Phys. Rev.

Lett. 80, 3109 �1998�.
51 P. W. Anderson and P. Morel, Phys. Rev. Lett. 5, 136 �1960�.
52 T. Soda and R. Vasudevan, Phys. Rev. 125, 1484 �1962�.
53 M. Keller, W. Metzner, and U. Schollwöck, Phys. Rev. B 60,

3499 �1999�.
54 M. Fortes, M. A. Solís, M. de Llano, and V. V. Tolmachev,

Physica C 364-365, 95 �2001�.
55 V. N. Popov, Functional Integrals and Collective Excitations

�Cambridge University Press, Cambridge, 1987�.
56 B. L. Gyorffy, J. B. Staunton, and G. M. Stocks, Phys. Rev. B

44, 5190 �1991�.
57 S.-i. Koh, Phys. Rev. B 49, 8983 �1994�.
58 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods

of Quantum Field Theory in Statistical Physics �Prentice-Hall,
New York, 1963�.

59 P. Soven, Phys. Rev. 156, 809 �1967�.
60 B. Velický, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev. 175,

747 �1968�.
61 J. Bardeen, L. Cooper, and J. Schrieffer, Phys. Rev. 108, 1175

�1957�.
62 M. Farine, F. W. J. Hekking, P. Schuck, and X. Viñas, Phys. Rev.

B 68, 024507 �2003�.
63 H. Olofsson, S. Aberg, and P. Leboeuf, Phys. Rev. Lett. 100,

037005 �2008�.
64 A. M. García-García, J. D. Urbina, E. A. Yuzbashyan, K. Richter,

and B. L. Altshuler, Phys. Rev. Lett. 100, 187001 �2008�.
65 P. G. de Gennes, Superconductivity of Metals and Alloys �Ben-

jamin, New York, 1966�.

PAVEL LIPAVSKÝ PHYSICAL REVIEW B 78, 214506 �2008�

214506-8


